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AbstrPd. The weakly nonlinear dispersive modulation of one-dimensional waves in a 
warm, collisionless, field-free, slightly non-uniform, streaming electron plasma is investi- 
gated. Equations governing the coupled slow modulations of the waves and the slow 
variation of the background plasma are obtained using a two-timing procedure devised 
by Gatignol. Under some restrictive assumptions the complex wave amplitude is shown 
to vary according to a nonlinear Schrodinger equation. 

1. Introduction 

Several authors have described methods for investigating nonlinear dispersive wave 
modulation when the wave amplitude is small, and dispersive and nonlinear effects 
are comparable. For example Kakutani and Sugimoto (1974), using an extension of 
the Krylov-Bogoliubov-Mitropolsky perturbation method applied to a model 
equation, showed that the complex wave amplitude was slowly varying according to 
a nonlinear Schrodinger equation. Kawahara (1973) obtained the same result using 
the ‘derivative expansion’ method. In these papers it was assumed that, to first order 
in a small parameter characterising the wave amplitude, the mean values of the 
perturbed quantities in the wave were just their equilibrium values, and that to zero 
order the frequency and wavenumber of the waves were not modulated. These 
restrictive hypotheses were not assumed by Gatignol (1977), who described a two- 
timing procedure which gave a more general system of modulation equations. By 
introducing the restrictions he was able to recover the nonlinear Schrodinger equation 
as expected. 

Kakutani and Sugimoto (1974) applied their method to several plasma systems 
including a warm electron plasma, while Gatignol (1977) illustrated his method by 
applying it to ion-acoustic waves. In both these papers it was assumed that the 
parameters describing the background plasma were constant and so it was convenient 
to write the basic equations in non-dimensional form. It was also assumed that the 
unperturbed plasma was at rest in the laboratory frame. 

The purpose of this paper is to apply Gatignol’s method to waves in a streaming 
warm electron plasma in which the background plasma is allowed to vary slowly. In 
P 2 the basic equations are given and the application of Gatignol’s method is described. 
A system of equations is derived, including the equation for conservation of wave 
action and the dispersion relation, which govern the coupled slow modulations of the 
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wave and the slow variation of the background plasma. In 0 3 the restrictive assump- 
tions referred to above are imposed and, for the case where the background plasma 
is uniform, the nonlinear Schrodinger equation governing the slow variation of the 
complex amplitude is derived. 

This paper complements the work of Gribben and Parkes (1981), where the same 
plasma system is studied using an averaging method and under the assumption that 
nonlinear effects dominate dispersive effects. 

2. Application of Gatignol's method 

With the assumptions and notation used in Gribben and Parkes (1981) the basic 
equations for the problem can be written as 

anlat +a(nu)/ax = 0,  (1) 

a0 - + - 1 - a ( u 2  + ?$) + 2 = 0, 
at 2ax 

aE/ax + (e/EO)(n - N )  = 0, (3) 

where E is the electric field. The equilibrium state is n = N, U = U, E = 0, where U 
is the streaming velocity of the plasma. The exact harmonic solution of the linearised 
system of basic equations is 

n = N + E(EOkA/e) sin 8, E = EA COS 8, 

where E is a small parameter characterising the wave amplitude. The phase variable 
8 is defined by 8 = kx -ut, and the frequency w and wavenumber k satisfy the linear 
dispersion relation 

U = U + E [ E O ( W  - k U ) A / e N ]  sin 8, 

- ( ~ - k k U ) ~ + o ~ + ( k ~ ~ ) ~ = O ,  (4) 
where o i  = Ne2/Eom and c f  = 3cN2/m. 

To study slowly modulated trains of waves of the above form, in which nonlinear 
and dispersive effects are taken into account and are comparable, we appeal to the 
reasoning of Gatignol(l977) and look for the unknowns in the form 

n = N O +  E ( N I ,  cos 8 + N ;  sin 8 )  + c2(N2 cos 28 + N ;  sin 26)+O(e3) ,  

U = UO + E (U* cos 8 + U ;  sin e)  + E 2( u2 COS 28 + U ;  sin 28) + O(E 3), ( 5 )  

E = E (Eo +El cos 8 + E :  sin 8 )  + &'(E2 cos 28 + E ;  sin 28) + O ( E  3), 

where the definition of 8 is now generalised to 

ae/at = -w, a e / a x  = k. (6) 

The quantities o, k, No, N 1 ,  etc are functions of E and the independent variables 
X = E X ,  T = E t  which correspond to variations on the slow scale. From (6) it follows 
that 

ak/aT+aw/ax = 0. (7) 

We shall use the notation { }I, { }I1 to denote the approximate value of the quantity 
within the braces up to first and second order in E respectively, while { }O, { }', { }z 
will denote the zeroth-, first- and second-order parts of that quantity respectively. 
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Hence, for example, {w}" = (w}O+ {w} l  + { w } ~ .  Clearly {No}' = N and {Uo}' = U. Also, 
without loss of generality, we can choose 6 so that E ;  = 0 to all orders. 

The expansions ( 5 )  are substituted into the basic equations (1)-(3), and in each of 
these equations we equate to zero the 6-independent term and the coefficients of 
cos 6, sin 6 to second order, and the coefficients of cos 26, sin 26 to zero order, 
respectively. We obtain the following systems of equations. 

(i) From the 6-independent terms in (l), (2), ( 3 )  we obtain the system 
0 {aN"+-(NOUO)] a I' +;{pl, a U l + N ;  U ; ) ]  =o, 

aT ax 
0 I-+-- Uo+-No 3~ 2) +- e:}'' +- c 2 {  - a ( ( U : + U ; 2 ) + - ( N : + N ; 2 ) ) ]  3c =o, a U o l a (  aT 2ax m 4 ax m 

(e/~o){~o-N}"+~2{aEo/ax}o = 0. (8) 
(ii) The cos 6 and sin 6 coefficient systems split, at each order, into two independent 

systems. One for the unknowns N1, Ul is obtained from the sin 6 coefficients from 
(l), (2) and the cos 6 coefficient from (3) :  

- $E2{k(N1 U2 + N ;  U ;  +N2U1 + N ; U ;  )}O = 0, 

m m 

(9) 

- + E ~ { ~ [ ( U ~ U Z +  U;U;>+(~C/~)(N~N~+N;N;)]}~= 0, 

( ~ / E ~ ) { N ~ } "  + E{aEl/ax}' = 0, 

where 3 = w -kUo, and a second system for the unknowns N ; ,  U;, El is obtained 
from the cos 6 coefficients from (l), (2) and the sin 6 coefficient from (3) :  

m m 

+ ~ E ~ { I C [ ( U ~  U;  - U ~ U ;  ) + ( 3 c / m ) ( ~ 1 ~ ;  - N ~ N ;  )]I0 = 0, 

{ - k ~ ~ ,  + (e/Eo)Ni }I1 = 0. 

System (9), with three equations for two unknowns, leads to a compatibility condition 
identified as the conservation of wave action equation. System (10) is homogeneous 
at each order and provides the dispersion relation. 

(iii) In a similar way the sin 26 coefficients from (l), (2) and the cos 26 coefficient 
from (3) give a system for the unknowns N2, U2, E;  : 

{2GN2--k(2NOU2+NlUl -N;U;))O=o, 

{4;u2 - k[ U: - vi2 + ( 3 c / m   NON^ + N :  - 

{2kE; + (e/~o)N2}' = 0, 

>I + 2 e ~ ; / m ) O  = 0, 
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and the cos28 coefficients from ( l ) ,  (2)  and the sin28 coefficient from ( 3 )  give a 
system for the unknowns NI,, UI,, E2. 

{2;N; -k(2NoUI, + N l U ;  +UlN;)}O=O,  

{2;UI, - k[ U1 U ;  + (3c/m)(2N& + N1N; )] - eEz/m}' = 0,  

(-2kE2+(e/~o)NI,}'= 0. 

As the steps involved in obtaining the solution of the above systems of equations are 
similar to those described by Gatignol (1977) for the ion-acoustic wave, they are not 
detailed here. We merely quote the final results. 

There are sixteen unknowns in all, of which ten are as follows: 

{(8k2c: + 30i)oXE:}~,  { U,}O = ~ {U;  }O = 0, 
- E O  

6mNwp 

6mwp {Eh}'= 4 { ( 4 k 2 c , 2  +3w;)kE:}O, {E2}' = 0. 

The coupled slow variations of the remaining six unknowns, {w}", {k}", (No}*', {U,}", 
{Eo}'', {El}' are given by (11)-(16)?. 

{ak/aT + aw/ax}" = 0, (16) 

f When { N i } " ,  {U;}" ,  which involve {El}', are eliminated from system (10) to obtain the dispersion 
relation, it is found that the coefficient of {El}' is {9}', i.e. zero. Hence El  only appears up to first order 
in (11)-(16). 
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where 

{ VG}' = {Uo + 3ckNi/mG}', 

a/av =a /aT+  U alax. 
Equations (11)-(13) come from system (8)) equation (14) is the equation for conserva- 
tion of wave action, (15) is the dispersion relation and (16) comes from (7). VG is 
the nonlinear group velocity defined by VG = aw/ak. 

To zero order (15) gives { 9 } O  = 0 which is just the linear dispersion relation (4). 
To first order (9)' = 0 and this is used to obtain (17). The second-order dispersion 
relation (15) has a linear term involving derivatives of {E1}' (the zero-order wave 
amplitude) due to dispersive effects and a term involving {E:}' due to nonlinear 
effects. In Gribben and Parkes (1981)) where dispersive effects were assumed to be 
of a smaller order than the nonlinear effects, the second-order dispersion relation did 
not involve derivatives. Note that for ion-acoustic waves, Gatignol (1977) showed 
that the dispersive term also includes derivatives of w and k. 

3. Derivation of the nonlinear Schrodinger equation 

We now assume that to first order the mean values of the perturbed quantities in the 
wave are just their equilibrium values. From (13) {NO}' is zero already, but now we 
assume that { Uo}' = 0 and {Eo}' = 0 as well. From (13) the latter assumption implies 
that {No}' = 0. If we also assume that to zero order w and k are not modulated, then 
we can write 

0 = U O - &  aa/aT, k = ko + E aalax, 
so that (16) is automatically satisfied, where wo, ko are constants and a is a function 
of X ,  T and E .  It follows that if we set {Uo}' = E' fi then 

{;}"= { ; , - E ( ~ c Y / ~ T +  vaa/ax)-E2k0fi}I', (18) 
where Go E wo - ko U. 

To zero order (1 1) and (1 2) give 

3c -+-- U 2 + - N 2 )  =O, 
aT 2 a x  m 

aN a -+- (NU)  = 0,  
aT ax 

and the second-order part of (1 1) gives 

whence 

fi = - { e o k o ~ o E ~ / 2 m N w ~ } o +  y / N ;  

where y = y( T ) .  Henceforth we shall consider the case where N, U are both constant, 
which is a possible solution of (19). This implies that Go is also constant. For 
convenience we non-dimensionalise X ,  T, 4, k, El ,  VG by cs/wp,  wp , wp, wp/cs ,  
mwpcs/e, cs, respectively. 

-1 
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The equation for conservation of wave action, (14), and the dispersion relation, 
(15), can be written 

(%+v,- aE a;}1 +--- ;: {aEl aa +-7 a2ai0 =o, 
axax 2 ax (20) 

2 1 a2E1 " ( (?E + v, 25) El} I + & { (g) + % (1 6k; + 15) + El Yko - z} = 0 9  aT ax 2wo 12wo 

where V, = { V,}' = U + ko/Go. The corresponding zero-order results 

the zero-order dispersion relation {9}' = 0, and (18) have been used to effect some 
simplification. To conform with the notation of Kakutani and Sugimoto (1974), we 
introduce a complex amplitude a by a =$Eleia and form the combination [i(20)- 
(21)le'" to obtain 

i{aa/aT + V ,  aa/ax}'+ E P  a2a/ax2 = E { Q ~ U ~ ~ U  + RU}', 

where 

P = 1/24;, Q = k:(16ki + 15)/3G0, R = yko. 

This can be transformed into the nonlinear Schrodinger equation 

i aa/aT + P a2a/aS2 = Q(u(*u (22) 

by introducing the coordinate transformation 6 = X - V,T, T = E T  and the phase shift 
a + a exp[-i 5' R(T')  d ~ ' ] .  Equation (22), with the streaming velocity U set to zero, 
agrees with the result of Kakutani and Sugimoto (1974). 
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